Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense
نویسندگان
چکیده
Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.
منابع مشابه
Toll Receptor-Mediated Hippo Signaling Controls Innate Immunity in Drosophila
The Hippo signaling pathway functions through Yorkie to control tissue growth and homeostasis. How this pathway regulates non-developmental processes remains largely unexplored. Here, we report an essential role for Hippo signaling in innate immunity whereby Yorkie directly regulates the transcription of the Drosophila IκB homolog, Cactus, in Toll receptor-mediated antimicrobial response. Loss ...
متن کاملParticipation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi.
The signaling network of innate immunity in Drosophila is constructed by multiple evolutionarily conserved pathways, including the Toll- or Imd-regulated NF-κB and JNK pathways. The p38 MAPK pathway is evolutionarily conserved in stress responses, but its role in Drosophila host defense is not fully understood. Here we show that the p38 pathway also participates in Drosophila host defense. In c...
متن کاملRequirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila.
Components of microbial cell walls are potent activators of innate immune responses in animals. For example, the mammalian TLR4 signaling pathway is activated by bacterial lipopolysaccharide and is required for resistance to infection by Gram-negative bacteria. Other components of microbial surfaces, such as peptidoglycan, are also potent activators of innate immune responses, but less is known...
متن کاملFunctional Dissection of an Innate Immune Response by a Genome-Wide RNAi Screen
The innate immune system is ancient and highly conserved. It is the first line of defense and the only recognizable immune system in the vast majority of metazoans. Signaling events that convert pathogen detection into a defense response are central to innate immunity. Drosophila has emerged as an invaluable model organism for studying this regulation. Activation of the NF-kappaB family member ...
متن کاملPellino enhances innate immunity in Drosophila
The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein...
متن کامل